

Django Google Sheets Import

The django-gsheets-import Python package is a Django application to facilitate data import from Google Sheets within Django’s admin framework.
It extends the great django-import-export [https://github.com/django-import-export/django-import-export] package, which already provides import and export capabilities for all local file formats supported by tablib [https://github.com/jazzband/tablib].
Exporting data from Django’s admin to Google Sheets is currently not supported by django-gsheets-import, but planned for a future release.

Contents:

	Getting started
	Installation and configuration

	Features and usage

	Setting up a Google Cloud Project
	Create a new Google Cloud Project

	Enable APIs

	Obtain credentials

	The demo application
	Setting up the Django project

	Getting the demo sheet

	Setting up a Google Cloud Project

	Running the demo app

	Further information on the demo app

Indices and tables

	Index

	Search Page

Getting started

Installation and configuration

The package and its dependencies can be installed from PyPI via pip install -U django-gsheets-import.
To use the package in your Django project, just add import_export and gsheets_import to the list of installed apps in your settings.py, i.e.

in settings.py
INSTALLED_APPS = [
 ...,
 'import_export',
 'gsheets_import',
 ...
]

In order for django-gsheets-import to work properly, it needs to be associated with an underlying Google Cloud Project (GCP).
How to properly set up an appropriate GCP using the Google Cloud Console is described in more detail in the corresponding section.
At this point, let us just note that all of the services needed are available in Google Cloud’s Free Tier [https://cloud.google.com/free/], so that there is no need to set up a billing account.
Assuming that a suitable GCP already exists, go to the Google Cloud Console [https://console.cloud.google.com/] and navigate to APIs & Services > Credentials.
From there, copy an API key, as well as the desired OAuth Client ID and add them to your settings.py.
The required project number can be found under IAM & Admin > Settings and must also be added to settings.py, i.e.

in settings.py
GSHEETS_IMPORT_API_KEY = '<Your API developers key>'
GSHEETS_IMPORT_CLIENT_ID = '<Your OAuth Client ID>'
GSHEETS_IMPORT_APP_ID = '<Your project number>'

The package is now ready to be used with your Django project.

Features and usage

The django-gsheets-import package presented here strongly relies on the functionality provided by the django-import-export package.
It extends that package by the option to allow the user to import data from their Google Sheets via the Django admin.
The usage of django-gsheets-import is very similar to that of django-import-export, which is nicely documented here [https://django-import-export.readthedocs.io/en/latest/].
It might also be instructive to have a look at the example Django project that ships with django-gsheets-import (see here for more details).

In short, integrating the Google Sheets import feature offered by django-gsheets-import into your Django project’s admin site is a two-step process:

	Define a resource which determines how the fields of a given model translate to their import (and export) representations.

	Define the admin interface of the considered model as a subclass of ImportGoogleModelAdmin or any of the other classes provided by the package’s admin submodule, namely ImportGoogleMixin, ImportGoogleExportModelAdmin, and ImportGoogleExportMixin.

Setting up a Google Cloud Project

In order to facilitate the interaction of the django-gsheets-import package with the Google Cloud, one generally proceeds in three steps, specifically:

	Create a Google Cloud Project.

	Enable the required Google APIs, namely the Sheets API as well as the Picker API.

	Create and download the required keys and identifiers related to those APIs and the user authentication workflow.

In the following, we will give step-by-step instructions to complete all of these tasks.

Create a new Google Cloud Project

	Go to the Google Cloud Console at https://console.cloud.google.com and sign in with the relevant Google account (e.g. a simple Gmail account).

	In the top navigation bar, click on Select a project (if you haven’t created a project before), or on the name of the currently selected project or organization.

	Click on NEW PROJECT in the following dialog box.

	Choose a project name, an organization, and a corresponding location. Confirm your choices by a click on the CREATE button.

	Note that the project does not need to be linked to a billing account, see Main Menu > Billing.

Enable APIs

	Navigate to Main Menu > APIs & Services > Library and select the API you want to enable.

	For the django-gsheets-import package to work properly, you need to enable the Google Sheets API as well as the Google Picker API.

	After selecting an API from the library and clicking on the ENABLE button, you are redirected to an overview page for this API. You can later come back to this page by going to Main Menu > APIs & Services > Dashboard and then selecting the API of interest from the table on the bottom.

	The aforementioned table lists all of the APIs that are currently enabled for your project. This includes several APIs that are enabled by default (cf. here [https://cloud.google.com/service-usage/docs/enabled-service#default] in the official documentation), but are not needed for our purposes. It may be wise to disable all of the APIs that are not explicitly needed. At least the django-gsheets-import package still works with all but the Sheets and Picker APIs disabled.

Obtain credentials

	The use of the Google Picker API requires the creation of an API key.

	Navigate to Main Menu > APIs & Services > Credentials and click on CREATE CREDENTIALS at the top.

	Restrictions for the newly created API key do not have to be added for the package to work, but should still be implemented for security reasons.

	Under Application restrictions, select HTTP referrers (websites) and add an appropriate URL under Website restrictions. Note that this can be skipped during local development and testing.

	Under API restrictions, choose Restrict key and select both the Google Picker API and the Google Sheets API from the drop-down list.

	The implementation of a proper authentication and authorization workflow requires the creation of OAuth credentials. Obtaining those is a two-step process: First, we need to configure the OAuth consent screen. Second, we need to create an appropriate OAuth 2.0 client ID.

	To configure the consent screen, go to Main Menu > APIs & Services > OAuth consent screen.

	As User Type you typically want to choose External. Click on CREATE and fill out the needed information.

	For django-gsheets-import to work properly, you need to add the (non-sensitive) .../auth/drive.file scope connected to the Google Sheets API in the next step.

	Add the email addresses of one or more test users with a valid Google account.

	To eventually remove the restriction on the number of (test) users, you may want to have your app verified by Google. For more information on the verification process, see here [https://support.google.com/cloud/answer/9110914], while details on unverified apps can be found here [https://support.google.com/cloud/answer/7454865].

	To create an OAuth 2.0 client ID, go to Main Menu > APIs & Services > Credentials and click on CREATE CREDENTIALS at the top.

	Select Web application as Application type.

	Set the Authorised JavaScript Origin to <Domain>, where <Domain> is typically http://localhost:8000 for local testing with the Django development server, or your deployment domain under which your web application is reachable. You can also add multiple relevant URIs here.

	Accessing the selected Google Sheet while only using the non-sensitive .../auth/drive.file scope requires the project’s App ID to be set. It is automatically created with each Google Cloud Project and can be found as Project number on your project’s dashboard or under the same name at Main Menu > IAM & Admin > Settings.

The demo application

In order to demonstrate the Google Sheets import feature provided by the django-gsheets-import package, the code ships with a small Django project whose admin interface uses the import functionality. It can be found in the tests/testapp/ subfolder.
In the following, we briefly sketch how to run the demo project and use it for testing the import feature.

Setting up the Django project

Assuming that Python and pip have already been installed globally or in an appropriate virtual environment (recommended), the demo project can be set up by following the steps listed below.

go to the project folder
cd tests/testapp/

install the required dependencies
pip install -r requirements.txt

prepare the database
python manage.py makemigrations
python manage.py migrate
python manage.py createsuperuser
python manage.py loaddata authors works

run the development server
python manage.py runserver

Getting the demo sheet

We have prepared a read-only sample Google Sheet called GSheets Import Demo, which is publicly available here [https://docs.google.com/spreadsheets/d/1-VADSGcNxWWbhZxkhpgKZS59lTh6GDJtoriHKaE5arY/edit?usp=sharing].
It contains two tables in two subsheets, one appropriate for each model in the demo project.
In order to use the sample sheet, click on the above link and sign in with your favorite Google Account (if you haven’t done so already).
The demo sheet should then automatically be available from that account’s Google Drive.

Setting up a Google Cloud Project

As previously mentioned, the interaction between Django and the user’s Google Drive is facilitated by an underlying Google Cloud Project (GCP).
For now, you will have to create such a project yourself in order to use it with the demo application.
This is possible with every standard Google Account, does not incur any additional costs and should not take more than a couple of minutes.
The exact steps to create and set up a GCP for use with django-gsheets-import are outlined here.
Once the GCP is ready, you need to retrieve your project’s API key, OAuth client ID, and project number and add them to the demo application’s configuration file, specifically

in tests/testapp/settings.py
GSHEETS_IMPORT_API_KEY = '<Your API developers key>'
GSHEETS_IMPORT_CLIENT_ID = '<Your OAuth Client ID>'
GSHEETS_IMPORT_APP_ID = '<Your project number>'

Running the demo app

Testing the import feature using the demo app typically amounts to the following steps:

	Navigate to http://localhost:8000 in your browser and sign in as the Django project’s superuser you created above.

	Both of the models in the project’s literature app were supplemented by the Google Sheets import functionality. Choose one of the models from the sidebar, which brings you to the admin’s changelist view. Here, click on the IMPORT button in the top right corner.

	The Google Sheet format is already pre-selected, so click on the Select a file... button.

	From the pop-up window, select the same Google Account which you used to access the sample sheet above.

	Grant your previously created Google Cloud Project the necessary rights when prompted.

	Select the “GSheets Import Demo” sheet from the Google Picker window.

	Make sure to select the subsheet appropriate for the current model from the corresponding drop-down list.

	Click on the SUBMIT button.

	If you like what you see, click on the CONFIRM IMPORT button to have the displayed data added to the underlying database.

Further information on the demo app

Here, we compile a few more details on the demo project and its implementation.

	As mentioned above, the import functionality was added to both of the models in our demo app. Correspondingly, if you have a look at literature/admin.py, you will find that both the AuthorAdmin class and the WorkAdmin class inherit from ImportGoogleModelAdmin.

	Otherwise, the main work is in implementing an appropriate import resource class for each model, which is done in literature/resources.py. A minimal implementation is used for the AuthorResource class, while a bit more customization was performed in writing the WorkResource class. Much more on import resources can be found in the documentation [https://django-import-export.readthedocs.io/en/latest/] of the django-import-export package.

Index

 nav.xhtml

 Table of Contents

 		
 Django Google Sheets Import

 		
 Getting started

 		
 Installation and configuration

 		
 Features and usage

 		
 Setting up a Google Cloud Project

 		
 Create a new Google Cloud Project

 		
 Enable APIs

 		
 Obtain credentials

 		
 The demo application

 		
 Setting up the Django project

 		
 Getting the demo sheet

 		
 Setting up a Google Cloud Project

 		
 Running the demo app

 		
 Further information on the demo app

_static/file.png

_static/minus.png

_static/plus.png

